IJESRT

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

A New Approach of Multicasting in Cloud Computing

Gaurav Raj^{*1}, Shabnam Sharma²

^{*1}Department Computer Science and Engineering, Punjab Technical University, Punjab, India ²Department Computer Science and Engineering, Lovely Professional University, Punjab, India er.gaurav.raj@gmail.com

Abstract

Cloud Computing is the emerging and prominent technology in IT world. Rather than setting up, the infrastructure, platform and services separately for each and every IT industry, are kept collaboratively, which can be accessed by numerous users, in turn reduces the cost of setup and maintenance. Numerous organizations access the services, use the infrastructure and platform from the communal data centre's that may lie beyond the reach of the organization. Accessing the data from these data centre's necessitates secure communication. While adopting the Cloud Computing Environment, security issues are the major concern for IT industries. Moreover, authentication is required to validate the Client to the Service Broker. In this paper, we have proposed Third Party Authentication, which registers the new clients as well as authenticates the already registered clients. This paper also aims to add a new functionality at the end of Service Broker. For Service Management, we proposed Multi Client broadcast Service (MCBS), by which the Service Broker multicasts and schedule the services, in response to the same kind of service requests sent by multiple clients , under the consideration of various parameters, including network delay, bandwidth available and number of hops between client and Service Broker, service request size and cost. MCBS is integrated with service scheduling based on Round Robin, Priority scheduling.

Keywords- CBCCP, NCRP, RCCP, MCBS

Introduction

"Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction".

There are three aspects (Vogels, 2008) of the Cloud Computing-

- The resources are available to the user on demand, so the cloud users need not to worry about the provisioning.
- Cloud User can use the resources on pay-peruse basis, irrespective of the time period, even for short term basis like for a day, for few hours.
- There is no need for the commitment from cloud users, regarding their resource consumption. Small Scale industries can start with fewer requirements for hardware and software resources, but can increase the requirement with time.

Services

- PaaS- In this type of service, Platform is provided to the cloud consumer as a service. For example-Operating System
- IaaS- In this type of service, infrastructure is provided to the cloud consumer as a service. For example-Storage area, server physical equipments.
- Saas- In this type of service, Software is provided to the cloud consumer as a service. For example-Microsoft Word, Notepad, Paint, or many other applications.

Table 1: Cloud Computing Architecture Compo	nents
--	-------

Cloud	It can be a person or organization who wants to use
Consumer	service from Cloud Providers.
Cloud	A person or organization who provides the services
Provider	to the users.
Cloud	A party who has to verify whether cloud provider is
Auditor	providing the services to user according to the
	service level agreement or not.
Cloud	It is the intermediate between cloud provider and the
Broker	user.
Cloud	It is the transport media by which services are
Carrier	routed to intended user.

http://www.ijesrt.com

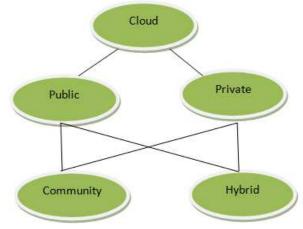


Figure 1: Architecture of Cloud Computing

• Deployment of Cloud

1). *Public Cloud:* It means that cloud is implemented at the cloud provider site and any user can access the services from this cloud provider.

2). *Private Cloud*:On-site- It means that cloud is implemented at the cloud customer site and only those users are allowed to access these services who belong to same organization as that of cloud customer.

Figure 2: Deployment of Cloud

Off-site- It means that cloud is implemented at the cloud provider site and only those users are allowed to access these services who belong to same organization as that of cloud customer.

3). Community Cloud: On-site- It means that cloud is implemented at the cloud customer site and only those users are allowed to access these services who belong to same organization as that of cloud customer. Here cloud customer can be two or more organizations.

Off-site- It means that cloud is implemented at the cloud customer site and only those users are allowed to access these services who belong to same organization as that of cloud customer. Here cloud customer can be two or more organizations.

4). *Hybrid Cloud:* It is the mixture of any of the above given deployments.

- Barrier to cloud computing
- Privacy and Security
- Performance and Reliability
- Portability and Interoperability

http://www.ijesrt.com

(C) International Journal of Engineering Sciences & Research Technology [1602-1610]

• Data breach through fibre optical network.

Objectives

- To authenticate the new clients who want to request for the service either IaaS, PaaS or SaaS to the Cloud Provider via Service Broker. And registration of the new client is done after authentication of both client as well as service broker by third party authentication server.
- To authenticate and validate the existing clients who wants to access the services, for which they have already registered to the service broker. Third party will authenticate the client and service broker and provides session key for one time communication.
- To serve the requests of multiple clients at the same time, which are requesting to access the same type of service, **concept of multicast** is used.

Proposed Algorithm

A. Client-Broker-Cloud Communication Paradigm

In this paradigm, focus is on the secure communication between Client and Service Broker by implementing two hop authentication methods so that no node can join or leave the route, once the RREQ packet is formed. The need for early detection of inconsistencies like insertion and deletion of nodes on the fly are described by (Raj, 2012). This communication is classified and implemented into two steps as follows-

- 1. New Client Registration Paradigm (NCRP)
- 2. Registered Client-Cloud Paradigm (RCCP)

New Client Registration Paradigm (NCRP):

This paradigm is applicable for only new users. When a new user wants to access the services available at Cloud via Service Broker, then the following steps are carried out.

Step 1: Client will send the request message $_{u}M_{b}$ to Service Broker. The request includes following:

 $_{u}M_{b}=[U_{id}, ToS]$

Step 2: Service Broker will forward its own identifier and identifier of Client to Third Party Authentication, by ending the message ${}_{b}M_{tp}$

$$_{b}M_{tp} = [U_{id}, B_{id}]$$

Step 3: Third Party Authentication will verify and validate both the communicating entities and respond back to the Service Broker.

Step 4: After authentication from Third Party, Service Broker will send the Service Level Agreement (SLA) to the Client.

Step 5: Client, if agrees, will respond with Yes or No to the Service Broker.

Step 6: If Client respond with "Yes" message, Service Broker will forward the Client Identifier to the Third Party Authentication, along with its own Identifier. $D=[U_{id}, B_{id}]$

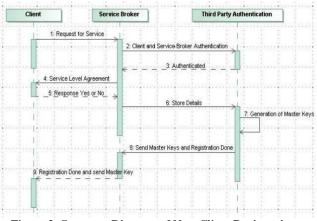


Figure 3: Sequence Diagram of New Client Registration Paradigm

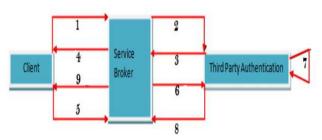


Figure 4: New Client Registration Paradigm

Step 7: Third Party Authentication will generate two Master Keys, one for Client and Other for Service Broker and store in the database repository along with their corresponding Identifiers.

 $R = [U_{id}, B_{id}, MK_{Ui}, MK_{Bi}]$

Step 8: Once the records are recorded in the database, Third Party Authentication will send the acknowledgement to the Service Broker.

Step 9: Service Broker will send confirmation regarding the completion of registration to the Client.

Registered Client-Cloud Paradigm (RCCP)

This paradigm is applicable for the registered user, who wants to access the services available at Cloud. Before providing the requested services to the user, Third Party will authenticate the user. Only then the Service Broker can serve the request.

This paradigm involves following steps-

Step 1: Client will send the request to Service Broker including its identifier and master key:

 $\mathbf{C} = [\mathbf{M}\mathbf{K}_{\mathrm{Ui}}, \mathbf{U}_{\mathrm{id}}]$

http://www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology [1602-1610]

ISSN: 2277-9655

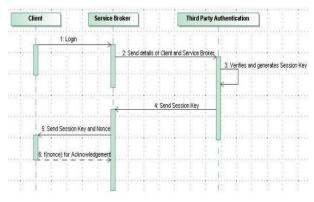


Figure 5: Sequence Diagram of Registered Client-Cloud Paradigm

Step 2: Service Broker will forward this request to Third Party Authentication for verification, along with its own identifier and master key:

B=[C, MK_{Bi},B_{id}]

Step 3: Third Party Authentication will verify details and generate Session Key.

Step 4: Third Party Authentication will send Session Key and identifiers of both communicating parties, to the Service Broker.

 $S = [SK_{Ui}, U_{id}, B_{id}]$

Step 5: Service Broker will send Session Key and Nonce to Client.

 $T=[SK_{Ui}, N_i]$

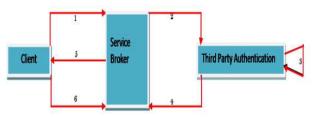


Figure 6: Registered Client-Cloud Paradigm

Step 6: Client will compute pre-decided function on Nonce and send it back to Service Broker. $f(T)=[SK_{Ui},f(N_i)]$

B. Multi Client Broadcast Service (MCBS) Algorithm

After authentication, Service Broker will evaluate how many Clients have requested for the service at the same time and what type of service is requested by them. For handling multiple clients at a time for same type of service, we proposed this algorithm using concept of multicasting based on few reliability parameters as cost, time and space. Algorithmic steps are as follows:

ISSN: 2277-9655

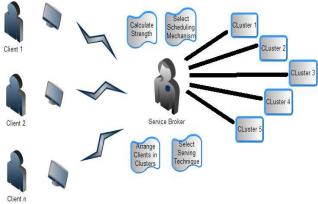


Figure 7: Multicasting Model

Step 1. If there are two or more clients who have requested for the same type of service at the same time, Service Broker will compute strength of the routes for each client asking for that service.

Strength = (Bandwidth / (Number of Hops x Network
Delay))

Step 2. Create five clusters of the clients on the bases of their strength as-

Very High(VH), High(H), Medium(M), Low(L), Very Low(VL).

Step 3. For providing service to these clusters we can use different scheduling approaches as per following cases:

1. Round Robin Scheduling- In this we usually set sequence of clusters as

 $VH \to V \to M \to L \to VL$

Multicast the service to each cluster for unit time interval.

• *Priority Scheduling*- Along with each and every cluster, priority is assigned. Arrange the clusters according to Priority and then Multicast the service to each cluster.

Step 4 : Depending upon the Serving Mechanism, Clients arranged in Clusters, are served, either unicasting is done or multicasting. Serving Mechanism depends on the number of clients who are requesting for same type of service at the same time.

Results

In this section, firstly, all clients register themselves to the service broker. Later, they login with their email id and password and verified by the service broker. Only that type of service, is offered to the client, that they have requested at registration time.

The whole scenario is shown in figures below:

Step 1: When a client registers itself to Service Broker.

Monu - JE http://localhosta	67/s × +			
4 > 0- 0 # 0	Web localhost1067/sccp_new/Newuser.aspx		+ 🛛 🖉 + Search with Google	P
	Secure Cloud Computing	g Paradigm	Kar	
	User Name	shab101		
	Password			
	Confirm Passw	ord		
	DOB	2/15/1990		
	E-Mail-ID	shab101@gmail.com		
	Phone No	9968776655		
	Type of Service	Saas 👻		
		Submit		
				0

Figure 9: Registration of Client 1

Step 2: Confirmation message will be shown to the user.

Menu 🖉 © http://localhost1067/s X 🛉	100 M			🚡 — C 🔫
🗲 🔶 🛏 🗶 🖪 🕲 Web localhost1	067/sccp_new/Newuser.aspx		Elements 0.0 + Search with Google	P
		Junicipal Velocation Velocational Velocational Velocational Story excising script on the page OC		
D 0- 4- 0-	S 10-204			Q, View (100%)

Figure 10: Client Information Saved

Step 3: Once the client data is successfully registered, he/she is provided a master key for security reasons, that can be used for authentication, whenever the clients logins next time onwards.

Figure 11: Master Key Window Step 4: Next time onwards, each and every client must be login to access the services of Service Broker.

http://www.ijesrt.com

Client 1:

Implications/00/nx Implications/00/nx Implications/00/nx Implications/00/nx	• Search with Google	P
Secure Cloud Computing Faradigm	New Registration	
Log In Enail Id (shaftsfögund com Password)		
D 0-4-0-		Q. View (2003)

Figure 12: Login Window of Client 1

Step 5: Login will not be successful, unless the client provides the master key.

Figure 13: Authentication of Client 1

Step 6: After the successful login, the shortest route is calculated between source to destination.

Step 7: Similarly, other clients will login and shortest path is calculated.

Figure 14: Shortest Route Calculation

Database Stored of all the Clients

bSignUp: Ta.	.P_DATA\MECH.MDF)	tbMessage: Qu	erP_DATA\MECH	MDF) sec:	Query(userP_DAT)	(MECHJMDF)	tbSignUp: Query(P_DATA\MECH.MD	F) X Broker.asp	oces HomeJaspo
Id	name	pass	email	dob	phone	CurrentStatus	TypeOfService	CurrentStrength	ClusterName	Status
5	admin	admin123	admin@gmail		9999999938	False	Paas	NULL	NULL	True
6	Test	123	test@test.com	5/7/2013	9999999997	False	Paas	827.00	C4	True
7	eman	123	emen@gmeil.c		9999999999	False	Paas	661.00	G	True
8	shab	shab	shab@gmail.co		9988776655	False	Sees	404.00	C2	True
9	shab1	shab1	shab1@gmail.c	5/6/2013	9876543210	False	Seas	391.00	C1	True
10	shab2	shab2	shab2@gmail.c	6/5/2013	887766554433	False	Laas	799.00	G	True
11	Banuan	123	123@gmail.com	5/20/2013	1234567899	False	Sees	650.00	G	True
12	newuser1	nul	newuser1@gm	1/29/1980	9988667755	False	Seas	NULL	NULL	True
13	shab101	shab101	shab101@gmai.	2/15/1990	9988776655	True	Seas	817.00	C4	True
14	shab102	shab102	shab102@gmai.	2/8/2001	9977886655	True	Saas	520.00	C2	True
15	shab103	shab103	sheb103@amei.	7/23/1981	9911887722	False	Seas	NULL	NULL	True
16	shab104	shab104	shab104@gmai		8899776633	True	Seas	947.00	C4	True
17	shab105	shab105	shab105@gmai	7/18/1991	7788996655	True	Paas	511.00	C2	True
18	shab106	shab106	shab106@gmai.	6/4/1980	7788996655	True	Paas	942.00	C4	True
19	shab107	shab107	shab107@gmai	3/5/1970	9876543291	False	Lees	NULL	NULL	True
20	shab108	shab108	shab108@gmai	1/29/1980	8899775566	True	Lees	639.00	C3	True
NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL
i 1 rer List 🔳 (of 16 🕨 🔰 🕨 🕅) Cell is Rood Or	Ŋ.							

Figure 15: Registration Data of all Clients

		SignUp: Ta. P_DATA\MECH.MDP)	tbMessage: QuerP_DATA\MECH.N	109) sec: Query(userP_DATA\MECH.M	DF) × 🔍	Solution Explorer
1009 b 1008 a 10077 a 10077 a 1005 a 1005 a 1005 a 1005 a 1005 a 10077 a	Imai emited test and aman Gymalic deinis Gymalic Nucl.					Decomposition Decompo
	> > > (0)					Solution Dr

Figure 16: Table of Master Key

Step 7: Now, Service Broker will login and arrange the clients into clusters, depending upon the strength calculated.

Figure 17: Login of Service Broker

http://www.ijesrt.com

[Raj, 2(6): June, 2013]

Figure 18: Authentication of Service Broker

Step 8: When Service Broker login, following window will be shown, which includes the details of clients login as well as they are also arranged into clusters.

🗋 localhost3067/sccp	UNIW ×	- years	
← → C 🗋 loc	alhost:106	7/sccp_nev	w/Broker.a
Cluster Name	Range		
C1	200-400		
C2	400-600		
C3	600-800		
C4	800-100		
C5	1000-12	:00	
Email Id	Type of Service	Cluster Name	Strengt
hab101@gmail.com	Sans	C2	414.00
shab103@gmail.com	Sans	C4	971.00
hab104@gmail.com		C2	534.00
ihab105@gmail.com		C3	792.00
ihab106@gmail.com		C4	960.00
ihab108@gmail.com	Lans	C2	405.00
Broadcast			
select Claster Selec			
Round Robin Schedul			
Average Wait Time F		obin Sched	hline
abel			
Priority Scheduling :			
Start Priority			
dat Plotty			
Average Wait Time F	or Priority S	Scheduling	
abel			

Figure 19: Main Window of Service Broker

Step 9: Depending upon the scheduling algorithm, either Round Robin or Priority based Scheduling algorithm, these clusters are served.

Step 10: If we click on Broadcast button, data is sent either using multicast or unicast, depending on the Type of Service of each Client. Unicast message will be sent if only one client from a particular cluster has requested for the service, otherwise Multicast message will be sent.

Table 2: Comparison of RR and Priority Scheduling for 6 Clients

Type of Cluster	Burst Time	in Round	Wait Time in Priority P123	Time in Priority	Wait Time in Priority P231
Cluster 1	17	0	0	0	0
Cluster 2	23	6	5.5	6	0
Cluster 3	78	55.9	25.3	25.9	27

http://www.ijesrt.com

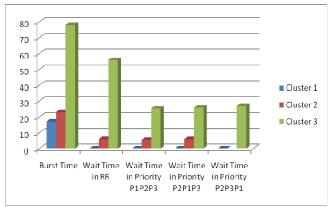


Figure 20: Performance Measurement of RR and Priority based Scheduling

Htp://iocalhest:10				🍓 💌 🔯 🚽 🖬 🖛 Page 🖬 Safety 🖛	Teste
C1	200-400			20 • 00 • 00 ill • lade+ saudi+	1006
C1 C2	400-600				
C3	400-500				
C3 C4					
	800-100				
C5	1000-12				
Email Id	Type of Service	Cluster Name	Strength		
test 2 test com	Pass	C4	967.00		
shab101@gmail.co		C4	823.00		
shab102@gmail.co		C2	530.00		
shab103@gmail.co		C2	526.00		
shab104@gmail.co	m Saas	C4	811.00		
shab105@gmail.co	m Paas	C1	397.00		
shab106@gmail.co	m Paas	Cl	395.00		
Broadcast					
Select Cluster Boli Round Robin Schee Average Wait Time Label	toling : For Round B	tobin Sched	hing		
Priority Scheduling Start Priority					

Figure 21: Main Window of Service Broker

Type of Cluster	Burst Time	Wait Time in Round Robin	Wait Time in Priority P123	Wait Time in Priority P213	Wait Time in Priority P231
Cluster 1	45	17.5	14.2	15	15.9
Cluster 2	19	6	4.5	5	0
Cluster 3	29	11.2	7	7.5	0

Table 3: Comparison of RR and Priority Scheduling for 7 Clients

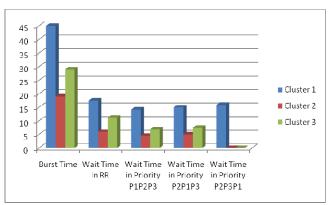


Figure 22: Performance Measurement of RR and Priority based Scheduling

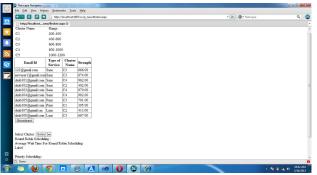


Figure 23: Main Window of Service Broker

Table 4: Comparison of RR and Priority Scheduling for 4 Clients in a Cluster

Type of Cluster	Burst Time	Wait Time in RR	Wait Time in P1213	Wait Time in P1312	Wait Time in P2321	Wait Time in P2123	Wait Time in P3132	Wait Time in P3231
Client 1	22	12	0	0	6.25	5.75	11.25	11.5
Client 2	24	14.4	11.5	17.5	17.5	0	0	6.25
Client 3	23	13.2	5.5	5.5	11.5	11.25	17.5	17.25
Client 4	25	15.6	17.5	11.5	0	17.5	5.75	0

http://www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology [1602-1610]

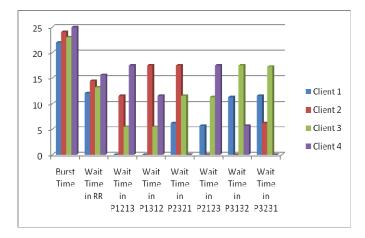


Figure 24: Performance Measurement of RR and Priority based Scheduling

Conclusion

The starting point of the paper is to provide authentication for the new clients as well as for the existing clients. Different type of authentication methods is available. Different levels of authentication are required for different type of service. Therefore, it is not possible to use same authentication algorithm for all types of applications. Even, authentication algorithms available are much complex and time consuming. So, here we have designed an algorithm of authentication, which is having least computational complexity. Next objective of the paper is to handle the requests of various clients at the same time, if they are requesting for the same type of service. So the scheme is proposed which uses the concept of Multicasting in the Cloud Computing Environment. From the results, this can be concluded that which type of scheduling mechanism is better than the other and under what circumstances.

Future Scope

A lot of work is in the process of communication in Cloud Computing. Till now, paradigm is proposed for multicasting of services, using Round Robin and Priority Scheduling algorithms. But in future, work can be carried out using other Scheduling techniques. Moreover, the problem of Congestion can occur, as the traffic in the network increases. So, the future work can be done on the above two given issues. In future, implementation of two-hop authentication algorithm will be carried out in secure reliable delivery neighborhood.

References

- [1] A, D. H. (2012). Multi-level Authentication Technique for Accessing Cloud Services. *Computing, Communication and Applications.*
- [2] A.Yassin, A. (2012). A Practical Privacypreserving Password Authentication Scheme for Cloud Computing. *IEEE 26th International Parallel and Distributed Processing Symposium Workshops.*
- [3] Armbrust, M. (2009). Above the Clouds: A Berkeley View of Cloud Computing. *Electrical Engineering and Computer Sciences*.
- [4] B.Meena. (2012). Cloud Computing Security Issues with Possible Solutions. *IJCST*. Behl, A. (2012). Analysis of Cloud Computing Security Issues. *IEEE*.
- [5] Bhadauria, R. (2011). A Survey on Security Issues in Cloud Computing. *IEEE Communications Surveys*.
- [6] Chen, N. (2010). Analysis and Improvement of User Authentication Framework for Cloud Computing. *International Journal of Innovations in Electronic Engineering and System*.
- [7] Choudhury, A. J. (2011). Analysis and Improvement of User Authentication Framework for Cloud Computing. *International Journal of Innovations in Electronic Engineering and System*.
- [8] F, L. (2010). Secure Virtualization for Cloud Computing. *Journal of Network Computer Application*, doi:10.1016/j.jnca.2010.06.008.
- [9] Group, T. C. (2010). *Cloud Computing and Security – A Natural Match whitepaper.*
- [10] Jadega, Y. (2012). Cloud Computing –Concepts , Architecture and Challenges. *Computing, Electronics and Electrical Technologies*.

http://www.ijesrt.com

(C) International Journal of Engineering Sciences & Research Technology

[1602-1610]

- [11] Jain, P. (2012). Security Issues and their Solution in Cloud Computing. International Journal of Computing & Business Research ISSN (Online): 2229-6166.
- [12] Liu, W. (2012). Research on Cloud Computing Security Problem and Strategy. *IEEE*.
- [13] Mell, P. (2011). The NIST Definition of Cloud Computing.
- [14] Paterson, K. G. (2003). A comparison between traditional Public Key Infrastructures and Identity-Based Cryptography. Information Security Technical Report.
- [15] Professionals, W. p. *Cloud computing :Silver Lining or Storm ahead.* IA newsletter.
- [16] Raj, G. (2011). An Efficient Broker Cloud Management System. Proceedings of the International Conference on Advances in Computing and Artificial Intelligence. New York.
- [17] Raj, G. (2012). Secure Cloud Communication for Effective Cost Management System through MSBE. International Journal on Cloud Computing: Services and Architecture.
- [18] Rao, S. (2005). Cloud Computing-An Overview. Journal of Theoretical and Applied Information Technology.
- [19] Revar, A. G. (2011). Securing User Authentication using Single Sign-On in Cloud Computing. *Institute of Technology*.
- [20] S.Munnee, F. (2007). Kerberos using Public Key Cryptography. *GMU-ECE*.
- [21]S.O., K. (2011). Cloud Computing Security Issues and Challenges. International Journal of Computer Networks.
- [22] Sabahi, F. (2011). Cloud Computing Security Threats and Responses. *IEEE*.
- [23] Saleem, R. (2011). Cloud Computing 's Effect on Enterprises...in terms of Cost and Security. Informatics.
- [24] SeungHwan, J. (2012). Next Generation Cloud Computing Issues and Solutions. *International Journal of Control and Automation*.
- [25] Shaikh, F. B. (2011). Security Threats in Cloud Computing. 6th International Conference on Internet technology and secured transactions. Arab Emirates.
- [26] Shen, Z. (2010). The Security of Cloud Computing System enabled by Trusted Computing Technology. 2nd International Conference on Signal Processing Systems.
- [27] Sivakumar, K. A. (2007). An Efficient Secure Route Discovery Protocol for DSR. *IEEE*. Technology, N. I. *NIST SP 500-292. Cloud Computing Reference Architecture: An Overview.*.

http://www.ijesrt.com

- [28] Vogels. (2008). A Head in the Clouds—The Power of Infrastructure as a Service. *Workshop* on Cloud Computing and in Applications.
- [29] Vouk, M. A. (2008). Cloud Computing Issues, Research and Implementations. *Journal of Computing and Information Technology*.
- [30] Wang, J. K. (2012). Data Security and Authentication in Hybrid Cloud Computing Model. *IEEE Global High Tech Congress on Electronics*.
- [31]Zhang, S. (2010). Analysis and Research of Cloud Computing System Instance. Second International Conference on Future Networks.
- [32] Zhi-hua, Z. (2012). An New Anonymous Authentication Scheme for Cloud Computing. *The 7th International Conference on Computer Science & Education.*